skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kang, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 22, 2026
  2. Free, publicly-accessible full text available April 23, 2026
  3. Abstract Circuit quantum electrodynamics enables the combined use of qubits and oscillator modes. Despite a variety of available gate sets, many hybrid qubit-boson (i.e. qubit-oscillator) operations are realizable only through optimal control theory, which is oftentimes intractable and uninterpretable. We introduce an analytic approach with rigorously proven error bounds for realizing specific classes of operations via two matrix product formulas commonly used in Hamiltonian simulation, the Lie–Trotter–Suzuki and Baker–Campbell–Hausdorff product formulas. We show how this technique can be used to realize a number of operations of interest, including polynomials of annihilation and creation operators, namely ( a ) p ( a ) q for integer p , q . We show examples of this paradigm including obtaining universal control within a subspace of the entire Fock space of an oscillator, state preparation of a fixed photon number in the cavity, simulation of the Jaynes–Cummings Hamiltonian, and simulation of the Hong-Ou-Mandel effect. This work demonstrates how techniques from Hamiltonian simulation can be applied to better control hybrid qubit-boson devices. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  4. Unitary t -designs are distributions on the unitary group whose first t moments appear maximally random. Previous work has established several upper bounds on the depths at which certain specific random quantum circuit ensembles approximate t -designs. Here we show that these bounds can be extended to any fixed architecture of Haar-random two-site gates. This is accomplished by relating the spectral gaps of such architectures to those of one-dimensional brickwork architectures. Our bound depends on the details of the architecture only via the typical number of layers needed for a block of the circuit to form a connected graph over the sites. When this quantity is bounded, the circuit forms an approximate t -design in at most linear depth. We give numerical evidence for a stronger bound that depends only on the number of connected blocks into which the architecture can be divided. We also give an implicit bound for nondeterministic architectures in terms of properties of the corresponding distribution over fixed architectures. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. In this paper, we present a combined experimental and theoretical study that explored the initial sticking of water on cooled surfaces. Specifically, these ultra-high vacuum gas–surface scattering experiments utilized supersonic molecular beam techniques in conjunction with a cryogenically cooled highly oriented pyrolytic graphite crystal, giving control over incident kinematic conditions. The D2O translational energy spanning 300–750 meV, the relative D2O flux, and the incident angle could all be varied independently. Three different experimental measurements were made. One involved measuring the total amount of D2O scattering as a function of surface temperature to determine the onset of sticking under non-equilibrium gas–surface collision conditions. Another measurement used He specular scattering to assess structural and coverage information for the interface during D2O adsorption. Finally, we used time-of-flight (TOF) measurements of the scattered D2O to determine how energy is exchanged with the graphite surface at surface temperatures above and near the conditions needed for gaseous condensation. For comparison and elaboration of the roles that internal degrees of freedom play in this process, we also did similar TOF measurements using another mass 20 incident particle, atomic neon. Enriching this study are precise molecular dynamics simulations that elaborate on gas–surface energy transfer and the roles of molecular degrees of freedom in gas–surface collisional energy exchange processes. This study furthers our fundamental understanding of energy exchange and the onset of sticking and ultimately gaseous condensation for gas–surface encounters occurring under high-velocity flows. 
    more » « less
  6. With an increasing prevalence of electronic cigarette (e-cigarette) use, especially among youth, there is an urgent need to better understand the biological risks and pathophysiology of health conditions related to e-cigarettes. A majority of e-cigarette aerosols are in the submicron size and would deposit in the alveolar region of the lung, where they must first interact with the endogenous pulmonary surfactant. To date, little is known whether e-cigarette aerosols have an adverse impact on the pulmonary surfactant. We have systematically studied the effect of individual e-cigarette ingredients on an animal-derived clinical surfactant preparation, bovine lipid extract surfactant, using a combination of biophysical and analytical techniques, including in vitro biophysical simulations using constrained drop surfactometry, molecular imaging with atomic force microscopy, chemical assays using carbon nuclear magnetic resonance and circular dichroism, and in silico molecular dynamics simulations. All data collectively suggest that flavorings used in e-cigarettes, especially menthol, play a predominant role in inhibiting the biophysical function of the surfactant. The mechanism of biophysical inhibition appears to involve menthol interactions with both phospholipids and hydrophobic proteins of the natural surfactant. These results provide novel insights into the understanding of the health impact of e-cigarettes and may contribute to better regulation of e-cigarette products. 
    more » « less